MDPI AG
Novel Approach to the Surface Degradation Assessment of 42CrMo4 Steel in Marine and Cavitation Erosion Environments
2025
This study focuses on the susceptibility and surface degradation of low-alloy carbon steel 42CrMo4 to corrosion and cavitation erosion, as this steel is widely used in marine environments with aggressive chemical species and harsh conditions. Due to its high strength and fatigue resistance, 42CrMo4 steel is often employed in offshore mechanical components such as shafts and fasteners as well as crane parts in ports and harbors. Various experimental methods, including corrosion and cavitation tests, were used to assess the steel’s surface integrity under extreme conditions. Surface changes were monitored using modern analytical tools for precise assessments, including image and morphological analyses, to quantify degradation levels and specific parameters of defects induced by corrosion and cavitation. Non-destructive techniques such as optical microscopy (OM), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and image analysis software were employed for the quantitative assessment of morphological parameters and elemental analysis. EDS analysis revealed changes in elemental composition, indicating corrosion products that caused significant mass loss and defect formation, with degradation increasing over time. The average corrosion rate of 42CrMo4 steel in a 3.5% NaCl solution reached a peak value of 0.846 mm/year after 120 days of exposure. Cavitation erosion behavior was measured based on mass loss, indicating the occurrence of different cavitation periods, with the steady-state period achieved after 60 min. The number of formed pits increased until 120 min, after which it decreased slightly. This indicates that a time frame of 120 min was identified as significant for changes in the mechanism of pit formation. Specifically, up to 120 min, pit formation was the dominant mechanism of cavitation erosion, while after that, as the number of pits slightly declined, the growth and merging of formed pits became the dominant mechanism. The cavitation erosion tests showed mass loss and mechanical damage, characterized by the formation of pits and cavities. The findings indicate that the levels of surface degradation were higher for corrosion than for cavitation. The presented approach also provides an assessment of the degradation mechanisms of 42CrMo4 steel exposed to corrosive and cavitation conditions.
Partners
Subscribe to repository